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Overview

Areas where plasmas and E-fields can have an influence 

• Enhance reaction rate & flamespeed

 Important for high-speed combustors (& other combustors too): 

 Ignition, from cold state especially & with liquid fuel

 Steady operation, through flamespeed enhancement and flameholding

 Potentially important for lean, gas-turbine (powerplant) operation

Might one also mitigate/influence acoustic fluctuations?

Potential for uniform performance with nonuniform fuel source

• Enhance fuel-air mixing & penetration

 Potential alternative to intrusive mechanisms (struts/pylons)

 Potential for dynamic control of penetration/mixing

 Potential for creating recirculation region for flameholding

•Boundary-layer & surface interactions

 Trip boundary layer; hold shock
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Overview
Fun Facts on US Energy Consumption 

• HC sources provide ~85% of 

nation’s energy 

 97% for transportation

• Transportation’s consumption 

about 28% of total

 1 million gallons/minute

• Quads = quadrillion (1015) BTU 

1018 J

Source: Energy Information Administration, Annual Energy 

Review 2005, Report DOE/EIA-0384 (2005).

See also Report of the Basic Energy Sciences Workshop on 

Basic Research Needs for Clean and Efficient Combustion 

of 21st Century Transportation Fuels

US Energy Consumption, 1950-2005
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Overview 
Plasma/E-field Effects on Ignition & Flame Behavior

-W E-field Effects on Flame Propagation
Stockman, Miles, Zaidi (Princeton), Ryan

Diagnostics of Plasma Enhanced Flames

Lee (MSU)

Planar FRS Thermometry with pulsed -W Source 

No -W Pulsed -W

Direct coupled 

plasma torch:

flame OH vs. 

-wave power: 

Plasma-assisted Ignition
Cathey, Gundersen, Wang, Cain (USC), Ryan

Ignition event

Effects of Gliding Arc on Flame Chemistry
Ombrello, Ju (Princeton), Gutsol, Fridman, (Drexel) 

P = 78 W 

a = 127 s-1Combustion Chamber



5

Enhancement of Flamespeed 

through Plasma Activation*

• Goal: Study flame propagation 

increase with plasma-excited 

oxidizer

• Integrate plasma source with 

custom Hencken burner

Gases mix at burner exit

Quartz coating of metal surfaces

• Operate at low P

Reduced reaction rates

Allow mixing of fuel & oxidizer 

upstream of flame

*Ombrello, Ju, Sun, Carter, Brown, Katta
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Enhancement of Flamespeed 

through Plasma Activation*

• Decrease chamber P to lift flame from surface
 Flame has fully premixed character at low P

• Apply diagnostics to characterize plasma species, T & V
 Species of interest: O3, O2(a

1
g), O2(b

1
g), O, O(1D)

*Ombrello, Ju, Sun, Carter, Brown, Katta
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Enhancement of Flamespeed 

through Plasma Activation*

*Ombrello, Ju, Won, Williams

Increasing Fuel Jet Velocity

Nozzle Tip

• Use low-P lifted jet flame: lift-off 

height HL sensitive to flamespeed, SL

• Characterize SL increase with HL

measurement  

• Produce & quantify O3 and O2(a
1

g)

measure HL
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Enhancement of Flamespeed 

through Plasma Activation*

*Ombrello, Ju, Won, Williams

• Graph shows isolated effect of O3

and O2(a
1

g)

 P = 27 or 51 Torr

• Concentrations of O2(a
1

g) as 

large as ~X = 0.6%

• Conversion of HL to SL requires 

additional measurements and/or 

modeling

• Work with Hencken flame will be 

follow-on effort
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Ignition Enhancement with Transient 

Plasma (TP)*

• Goal: Determine physical mechanism, 

primarily for transient plasma ignition

 What is role of humidity: XH2O affects 

detonation wave speed in PDE but not  tign

• Measure XOH and XO3 vs. XH2O in air

 OH from PLIF & O3 from absorption

 Need to sample along anode, especially 

since flame originates from anode surface

• Highly desirable: O-atom distribution

 Also CH3 and CH2O

*Singleton, Pendleton, Gundersen (USC), Stockman, Carter, Brown

Combustion chamber
• Variable anode lengths & materials

• Optical access: windowed-slits (not 

shown)  & end-flange window
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Ignition Enhancement with TP*

• Effect of anode length & comparison to spark plug (2 cm from back wall)
 Significant reduction in tign even with 3-mm length protrusion

• Flame propagates from anode to wall
 Flame initiation and propagation approx. uniform along perimeter & length 

*Singleton, Pendleton, Gundersen (USC), Stockman, Carter, Brown

stoichiometric C2H4-air

P = 1 atm

Epulse = 550 mJ (75 kV)

tpulse 100 ns
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Ignition Enhancement with TP*

*Singleton, Pendleton, Gundersen (USC), Stockman, Carter, Brown

Laser 

sheet

Anode

Field 

of View

window slits

• Camera looking down into chamber

• Continuous flow of moist air

 1-Hz pulse frequency

 XH2O measured with TDLAS

• PLIF of OH: Peak signals ~1015 cm-3
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anode

Ignition Enhancement with TP*

*Singleton, Pendleton, Gundersen (USC), Stockman, Carter, Brown

• Camera looking down into chamber

• Continuous flow of moist air

 1-Hz pulse frequency

 XH2O measured with TDLAS

• PLIF of OH: Peak signals ~1015 cm-3
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Ignition Enhancement with TP*

*Singleton, Pendleton, Gundersen (USC), Stockman, Carter, Brown

PD
LED  beam

washer-

anode

X
O

3
(p

p
m

)

time ( s)

• UV LED beam positioned over washer

 Undetectable XO3 with normal config.

• 1-ms LED pulse synched to TPI pulse

 200 o-scope waveforms recorded

 Presumably, XO3 distribution nonuniform

Line-of-sight average 

concentration
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Resonant Laser Induced Breakdown               

for Fuel-Air Ignition*

•Goal:  Investigate effectiveness of low-energy 

REMPI laser pulse to control spatial & temporal 

behavior of ignition spark in air crossflow

• Approach:

 Apply potential (below breakdown value)

 Focus UV laser pulse at REMPI transition & 

ionize channel between gap

To be presented at ASM-2010

*S. Adams, J. Miles, and A. Laber (AFRL/RZPE)

70

Lens

Anode

Cathode

Air
Flow

1-5 cm
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Resonant Laser Induced Breakdown 

for Fuel-Air Ignition*

*S. Adams, J. Miles, and A. Laber (AFRL/RZPE)

• Sample photo of a laser induced arc  
 Main arc follows laser path

 Secondary arcs & plasma glow occur 

after main arc; result of leakage current 

as capacitor recharges 5 cm



16

• Goal: Study effect of pulsed plasma on a C3H8/air Bunsen flame
• Quantify with phase-averaged Raman scattering and CH chemiluminescence & 

time-resolved OH chemiluminescence

Non-thermal Plasmas to Modify

Combustion Kinetics*

*B. Ganguly, J. Schmidt (AFRL/RZPE)

OH Plasma 

Emission 

V-I Characteristics

PMT

ICCD

burner
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• Goal: Study effect of pulsed plasma on a C3H8/air Bunsen flame
• Quantify with phase-averaged Raman scattering and CH chemiluminescence & 

time-resolved OH chemiluminescence

Non-thermal Plasmas to Modify

Combustion Kinetics*

*B. Ganguly, J. Schmidt (AFRL/RZPE)

OH Plasma 

Emission 

V-I Characteristics
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n
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Raman probe beam

C3H8-air

Electrode

Unperturbed 

(no voltage)
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• Goal: Study effect of pulsed plasma on a C3H8/air Bunsen flame
• Quantify with phase-averaged Raman scattering and CH chemiluminescence & 

time-resolved OH chemiluminescence

Non-thermal Plasmas to Modify

Combustion Kinetics*

*B. Ganguly, J. Schmidt (AFRL/RZPE)

OH Plasma 

Emission 

V-I Characteristics

B
u
n
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n
 B

u
rn

er

Raman probe beam

C3H8-air

Electrode

Voltage applied; 

plasma formed
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Non-thermal Plasmas to Modify

Combustion Kinetics*

*B. Ganguly, J. Schmidt (AFRL/RZPE)

Intensity Map for Selected Images
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• 200 Hz rep rate pulsed discharge
 Few mJ of energy input; significant perturbation

• Phase-locked measurement of T and CH chemiluminescence
 Finite response of flame; some recovery before next pulse

. 

Flame perturbed

by pulsed plasma
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Summary

Three final thoughts:

• Understanding the role of electric fields, plasma & plasma-derived 

species in initiating and sustaining combustion of critical importance 

to more effective use 

 Potential for impacting many areas related to use of hydrocarbons

• We (AFRL) welcome collaborations!

 Many already with MURI team members

 We’ll even do some crazy stuff

• Good luck on efforts!


